Carbamazepine-resistance in the epileptic dentate gyrus of human hippocampal slices.
نویسندگان
چکیده
Overexpression of drug efflux pumps at the blood brain barrier (BBB) has been suggested to be one important factor contributing to drug resistance in epilepsy. This would imply that resected brain tissue of drug-resistant patients is drug-sensitive in absence of the BBB. Here we studied the effects of carbamazepine (CBZ) at therapeutically relevant concentration on epileptiform activity electrophysiologically recorded in acute hippocampal slices of patients with mesial temporal lobe epilepsy (MTLE; 28 patients, 49 slices) or extra-hippocampal tumours (tumour; 6 patients, 11 slices). Epileptiform activity was induced by hilar stimulation (0.067 Hz) during elevation of extracellular potassium concentration ([K(+)](o)) and remained self-sustained in presence of 10-12 mM [K(+)](o). Quantitative analysis of data revealed that epileptiform activity in tissue of tumour-patients was predominantly suppressed by CBZ, indicating that the 'epilepsy model' used is CBZ-sensitive. In contrast, epileptiform activity in tissue of drug-resistant MTLE patients was resistant to CBZ in 82% of patients, partially suppressed in 11% and completely suppressed in 7%. The effects of CBZ in tissue of MTLE patients did not depend on the type of activity, hippocampal pathology, excitability of the tissue, or equilibration time of the drug. Considering that CBZ has direct access to all compartments of the slice, our results suggest that CBZ-resistance mechanisms are located within the parenchyma of the dentate gyrus and contribute to drug resistance in the majority of MTLE patients. BBB-located drug-resistance mechanisms per se may play a minor role in this region, because CBZ-sensitivity was only observed in 7% of CBZ-resistant patients.
منابع مشابه
GABAergic transmission facilitates ictogenesis and synchrony between CA3, hilus, and dentate gyrus in slices from epileptic rats.
The impact of regional hippocampal interactions and GABAergic transmission on ictogenesis remain unclear. Cortico-hippocampal slices from pilocarpine-treated epileptic rats were compared with controls to investigate associations between seizurelike events (SLE), GABAergic transmission, and neuronal synchrony within and between cortico-hippocampal regions. Multielectrode array recordings reveale...
متن کاملAltered dentate filtering during the transition to seizure in the rat tetanus toxin model of epilepsy.
The dentate gyrus is thought to be a key area in containing the spread of seizure discharges in temporal lobe epilepsy. We investigated whether it actively contributes to the transition to seizure in vivo using the tetanus toxin chronic experimental epilepsy. Brief epileptic discharges lasted <2 s in freely moving animals and were clearly distinguishable from spontaneous seizures that lasted te...
متن کاملGABAergic transmission facilitates ictogenesis and synchrony between 1 CA 3 , hilus , and dentate gyrus in slices from epileptic rats
31 32 The impact of regional hippocampal interactions and GABAergic transmission on ictogenesis 33 remain unclear. Cortico-hippocampal slices from pilocarpine-treated epileptic rats were compared to 34 controls to investigate associations between seizure-like events (SLE), GABAergic transmission, and 35 neuronal synchrony within and between cortico-hippocampal regions. Multielectrode array reco...
متن کاملCharacterization of spontaneous recurrent epileptiform discharges in hippocampal–entorhinal cortical slices prepared from chronic epileptic animals
Epilepsy, a common neurological disorder, is characterized by the occurrence of spontaneous recurrent epileptiform discharges (SREDs). Acquired epilepsy is associated with long-term neuronal plasticity changes in the hippocampus resulting in the expression of spontaneous recurrent seizures. The purpose of this study is to evaluate and characterize endogenous epileptiform activity in hippocampal...
متن کاملNPY inhibits glutamatergic excitation in the epileptic human dentate gyrus.
Neuropeptide Y (NPY) has been shown to depress hyperexcitable activity that has been acutely induced in the normal rat brain. To test the hypothesis that NPY can also reduce excitability in the chronically epileptic human brain, we recorded intracellularly from dentate granule cells in hippocampal slices from patients with hippocampal seizure onset. NPY had a potent and long-lasting inhibitory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 129 Pt 12 شماره
صفحات -
تاریخ انتشار 2006